About

Python Programming

+
Happy Clients
+
Years Of Experience

วิธีการฝึกอบรม

หัวข้อการอบรม

Basic Python Programming

Week 1

– Introduction to Python
– Basic Programming
– Variables, Operators, Built-in Functions
– Print, Precision Width

Week 2

– Lists
– Slicing
– Tuples 
– Methods

Week 3

– Sets
– String
– Dictionaries
– Methods

Week 4

– Control Flow Statements- If else, if else
– for and  while  Loop

Week 5

– Functions
– Implicit Arguments
– Lambda Functions

Week 6

– Object-Oriented
Programming 
– Inheritance
– Polymorphism
– Encapsulation 
– Abstraction

Still Confused About Our Features? Get A Consultation

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat

+
Happy Clients
+
Years Of Experience

หัวข้อการอบรม

Data Analysis with Python

Week 1

– Review of basic Python concepts (data types, variables, control structures, functions)
– Introduction to data analysis with Python
– Installing and using Python libraries for data analysis (NumPy, Pandas, Matplotlib)
– Working with data in NumPy and Pandas 
– Importing and exporting data (CSV, Excel, JSON, SQL)

Week 2

– Visualizing data with Matplotlib
– Line plots, scatter plots, bar plots, histograms
– Customizing plots (labels, titles, legends, colors, markers)
– More visualization: seaborn for statistical exploration
– Pairplot: scatter matrices
– lmplot: plotting a univariate regression
– Descriptive statistics with Pandas

Week 3

– Measures of central tendency (mean, median, mode)
– Measures of dispersion (range, variance, standard deviation)
– Grouping and aggregating data with Pandas
– Grouping by a single column or multiple columns
– Applying functions to groups (mean, sum, count, min, max)
– Statistical analysis with SciPy
– Probability Density Function
– Cumulative Distribution function
– Central Limit Theorem

Week 4

– Hypothesis testing: comparing two groups
– Student’s t-test: the simplest statistical test
– Paired tests: repeated measurements on the same individuals
– Analysis of variance (ANOVA)
– Linear/Multiple Regression

วิธีการฝึกอบรม

Still Confused About Our Features? Get A Consultation

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat

+
Happy Clients
+
Years Of Experience

วิธีการฝึกอบรม

หัวข้อการอบรม

Machine Learning with Python

Week 1

– Introduction to machine learning   
– Python libraries for machine learning (NumPy, Pandas, Scikit-learn)
– Regression (linear, logistic, polynomial)
– Evaluation of Regression Models

Week 2

– Classification (KNN, decision trees, SVM)
– Evaluation of Classification Models
– Training and testing sets
– Cross-validation
– Metrics (accuracy, precision, recall, f1 score)

Week 3

– Unsupervised learning with scikit-learn
– Clustering (K-means, hierarchical)
– Dimensionality reduction 
– Anamoly Detection

Week 4

– Fine-tuning machine learning models
– Hyper parameter optimization
– Case study : applying machine learning techniques to a real-world dataset (Group)
– Modeling and predicting with supervised and unsupervised learning
– Present Project

Still Confused About Our Features? Get A Consultation

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat

Our Team

วิทยากร

ผศ.ดร.ทวีศักดิ์ สมานชื่น

ผศ.ดร.ทวีศักดิ์ สมานชื่น

อาจารย์ประจำกลุ่มสาขาวิชาเทคโนโลยีการจัดการระบบสารสนเทศ
คณะวิศวกรรมศาสตร์ มหาวิทยาลัยมหิดล

Give Us A Call

(+021) 645 863 232

Send Us A Message

support@domain.com

Office Location

Jl. Sunset Road No.815

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore

News Letter

Lorem ipsum dolor sit amet, consectetur adipisci elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua

Copyright © 2022. All rights reserved.